Lattice path matroids: Structural properties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice path matroids: The excluded minors

A lattice path matroid is a transversal matroid for which some antichain of intervals in some linear order on the ground set is a presentation. We characterize the minor-closed class of lattice path matroids by its excluded minors.

متن کامل

Toric Ideals of Lattice Path Matroids and Polymatroids

We show that the toric ideal of a lattice path polymatroid is generated by quadrics corresponding to symmetric exchanges, and give a monomial order under which these quadrics form a Gröbner basis. We then obtain an analogous result for lattice path matroids.

متن کامل

A Tutte polynomial inequality for lattice path matroids

Let M be a matroid without loops or coloops and let TM be its Tutte polynomial. In 1999 Merino and Welsh conjectured that max(TM (2, 0), TM (0, 2)) ≥ TM (1, 1) for graphic matroids. Ten years later, Conde and Merino proposed a multiplicative version of the conjecture which implies the original one. In this paper we show the validity of the multiplicative conjecture when M is a lattice path matr...

متن کامل

Lattice path matroids: enumerative aspects and Tutte polynomials

Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroid...

متن کامل

Computing the Tutte polynomial of lattice path matroids using determinantal circuits

We give a quantum-inspired Opnq algorithm computing the Tutte polynomial of a lattice path matroid, where n is the size of the ground set of the matroid. Furthermore, this can be improved to Opnq arithmetic operations if we evaluate the Tutte polynomial on a given input, fixing the values of the variables. The best existing algorithm, found in 2004, was Opnq, and the problem has only been known...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2006

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2005.01.008